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Abstract. We generalize an idea applied recently to the case of identical particles and present 
a group-theorrtical analysis of the periodic-orbit StNCfUm of a chaotic dynamical system with 
a discrete symmetry The c h s  structure of the group provides ule key for the classification 
of periodic orbits. This structure perfectly fits the quantum-mechanical trace formula which is 
the starting point for the Balian-Bloch-GuUwiller semi-classical approximation. For a specific 
irreducible representation of the symmetry group, we derive a modified form of the periodic-orbit 
sum. 

Dedicated to Klaus Dietrich on the occasion of his sixtieth biahday 

1. Introduction 

Discrete symmetry groups are of central importance in quantum mechanics. Their 
irreducible representations (IR) label the invariant subspaces of Hilbert space which are 
not connected dynamicdly. Hence, it is natural to expect that such symmetry groups also 
play an important role in the phasespace stmcture of classically chaotic systems, since 
recent advances in the semi-classical approximation suggest that many (if not all) quantal 
properties of such systems can be derived semi-classically. 

The Bloch-Balian-Gutzwiller approach to semi-classical quantization [ 11 uses the 
unstable isolated periodic orbits as the central element of the theory. For a generic 
fully-chaotic classical system, these orbits form a dense set in phase space and, therefore, 
determine the dynamical structure. Thus, it is of interest to study the properties of such 
orbits in the presence of a discrete symmetry, and to use the result for a simplification 
of Gutzwiller’s periodic-orbit sum. This is the programme of the present paper. In our 
work, we have in mind symmetry groups that relate both to the geometrical properties of 
the Hamiltonian and to particle identity. 

Several authors [2.3] have approached the problem of group symmetry using the concept 
of reduced phase space. This concept entails a tiling of the phase space which is chosen 
in such a way that application of the group operations to a single tile generates the full 
phase space. This approach appears to be limited to groups of coordinate transformations 
which are true representations of the full group on the entire phase space, a condition which 
is usually met. In practical applications, perhaps a more severe difficulty consists in the 
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very construction of the tiling. This construction involves the full complexity of the group 
under consideration. We have in mind, for instance, the case of N identical particles and 
the associated symmetric group with N! elements. For N >> 1, this group is formidable. 

The method developed in the present paper avoids the use of the reduced phase space and 
generalizes an alternative approach developed earlier by one of the authors [4] for the specific 
example of permutations of identical particles. We classify the periodic orbits directly in 
terms of their symmetry properties. This procedure offers the following advantage. In many 
applications of the periodic-orbit sum, one is only interested in the shortest periodic orbits. 
Thus, it may never be necessary to take account of the full complexity of the entire group: 
it will suffice to consider the symmetries that actually matter for the orbits used. For large 
groups, this may be an essential advantage. 

In section 2, we analyse the symmetry properties of the classical periodic orbits in terms 
of conjugate classes (henceforth, also simply called classes) of the discrete group. We do 
so without referring to the quantum trace formula for the level density, although it turns 
out (section 3) that this formula calls for the use of such classes. This procedure leads 
(section 4) to a restriction of the semi-classical periodic-orbit sum which is commensurate 
with the minimal invariant subspaces defined by the IR of the group, Finally, we comment 
on situations where the Hamiltonian contains intrinsic variables such as spin and isospin 
and draw some conclusions. 

T H Sel ignm and H A Weidenmiiller 

2. The  structure of the periodic orbits for systems with discrete symmetries 

Let H be a Hamiltonian defined on a 2n-dimensional phase space (symplectic manifuld) 
M ,  and let H be invariant with respect to a discrete symmetry group B. Let CH(t) be the 
Hamiltonian flow induced by H on M, i.e. the canonical transformation which describes 
the time evolution on M over a time t under the action of N. Clearly, C H ( ~ )  is a map of 
M onto itself. By assumption, the elements g of the group 0 of symmetry transformations 
on M commute with C H ( ~ )  

c H ( r )  = g C H ( r ) g - ’  vg E 8. (2.1) 

In particular. if r E M is a point on a periodic orbit with period T, then its image g r  
obtained by application of the transformation g E G also lies on a periodic orbit with the 
same period. Indeed, transformation C H ( T )  maps every point r on the first orbit onto itself, 
and relation (2.1) implies that it does the same for any of the transformed points gr .  We 
note that the orbit containing point g r  may or may not coincide with the orbit containing 
point r. We refer to the set of orbits reached by application of any group element to a 
fixed point on some specified but arbitrary primary orbit as a set of dynamically equivalent 
orbits. 

What are the implications of the group symmetry for the set of dynamically equivalent 
periodic orbits? We distinguish two alternatives. First, no two points g r ,  Vg E B lie on 
the same orbit. Then, the number of elements in the set of dynamically equivalent orbits 
is equal to the number of group elements. Second, some elements of B transform a 
point on the primary orbit into another point on the same orbit. This is the more interesting, 
case, and we can apply a result obtained previously by one of the authors for the case 
of permutations 141. Note that here, as in [4], we assume that G acts non-trivially on all 
periodic orbits. This is not necessarily always true and we will discuss the implications of 
the trivial action of B in the appendix. 
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We consider the set S of points on the primary orbit which are obtained from a given 
point r by symmetry transformations. The points in S are spaced equidistantly in time 
on the primary orbit. In other words, there exists a minimal time step T' such that 
CH (T') transforms any point in the set into the next (defined by following the trajectory 
in the direction of increasing time), and there exists a group element which does the same. 
Hence, all points in S can be reached from any given point in S by iterating a symmetry 
transformation g, E B which connects neighbouring points. We note that the group element 
g, is equivalent to C d T ' )  only on the primary orbit and not on all points in M. 

To prove this statement, we order the points in S in the manner in which they are 
reached as the primary orbit is traversed in the direction of increasing time. Of all the 
nearest neighbours in S defined by this ordering, let ro and rl be two points which are 
separated by the shortest time interval T'. (The choice of the pair may not be unique.) 
There then exists a map C,(T') which takes ro into rI. By definition of set S, there also 
exists a group element g, such that rl = gJo. However, for any integer K ,  the point 
C"(T')*ro also lies on the primary orbit. By repeated application of equation @.I), it 
follows that this point can equivalently be written as g:ro. Thus, all powers of g, lead to 
points on the primary orbit, i.e. points in S. However, the points &ro with integer K must 
also be all the points in S. Indeed, if there were another point r' in S which cannot be 
written as gfro with integer K ,  it must lie on the primary orbit between a pair of points 
(rm, Tm+,, say) which do have this form. However, then the time needed to reach r' from 
r, would be shorter than T', in contradiction to the assumption. 

Let k be the smallest integer for which g: equals the unit element of the group. Then, 
kT' = T .  Moreover, we have found that a cyclic subgroup C i  E B of order k generated by 
g, defines the group symmetry on the primary orbit. We note that because of equation (2.1), 
this statement is independent of the choice of the starting point on the primary orbit. 

We now use simple group properties to extend this result to all orbits in the set of 
dynamically equivalent orbits. Let 'Hc C G be the subgroup of elements of B which 
commute with g,. We note that CL 'C 'Hc. The set {ggcg- ' ,Vg E 8)  forms a conjugate 
class of the group. Each element is covered 1'H,l times as g runs through the group. Each 
element raised to the power k equals the unit element of the group. 

We immediately conclude the following. 
(i) With g, as the elementary group operation on the primary orbit, there exist 1 = l'Hc[/k 

dynamically equivalent orbits with the same elementary group operation. Indeed, applying 
any element gh in 'H,, which cannot be written as a power of g,, to a point on the primary 
orbit leads to an orbit which differs from the primary orbit. On this orbit, ghg&' has the 
same function that g, has on the primary orbit and ghgcg;' = g,  by definition of 'H,. 

(ii) Each element of the conjugate class of g, is, by the same reasoning, the elementary 
group operation on another subset of I dynamically equivalent orbits. 

This makes a total of l G l / k  distinct orbits which comprise the set of dynamically 
equivalent orbits generated from the primary orbit. We note that the primary orbit does not 
play a distinct role in the set; it was introduced only in order to generate the set. Any orbit 
in the set would have served the same purpose. This shows that we have established an 
equivalence relation between orbits belonging to the same set. This equivalence relation is 
generated by the conjugate class generated by g,. The set of dynamically equivalent orbits 
consists of subsets each containing 1 orbits with the same elementary symmetry operation. 
For the application of our result in the next section, this last point is irrelevant because the 
trace operation eliminates the distinction between different members of the conjugate class. 

We note that the central element of our theory is given by a piece of the primary 
orbit which connects a point To to the neighbouring point gJ0.  We refer to this as the 
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elementary trajectory. Application of group operations to the elementary trajectory generates 
other trajectories; the sum of which equals the set of dynamically equivalent periodic orbits. 
The symmetry group thus establishes an equivalence relation between trajectories which are 
pieces of periodic orbits belonging to the same set. It follows that these pieces all have 
the same topological properties and, in  particular, the same Maslov index. They also have 
the same dynamical properties such as the action along the trajectory or the monodromy 
matrix. All this follows directly from equation (2.1). 

It also follows that for a non-cyclic symmetry group, the sets of dynamically equivalent 
periodic orbits must always have more than one member. Even for cyclic groups, such sets 
will, in general, occur. 

Having found a classification scheme for a set of dynamically equivalent orbits, we 
now introduce a more general concept. The set of algebraically equivalent orbits comprises 
all sets of dynamically equivalent orbits which are characterized by the same conjugate 
class within 8,  i.e. the elementary group operations are from the same class on all these 
orbits. Generically, this is an infinite set while all finite sets of dynamically equivalent 
orbits comprising it have the same group-theoretical structure, i.e. the same groups 'idc, C; 
and the same finite number of elements k. We make use of this concept in section 4 when 
we break the periodic-orbit sum into contributions from different algebraically equivalent 
sets and, within each set, from different dynamically equivalent sets. 

T H Seligman and H A  Weidenmiiller 

3. The trace formula 

In the formulation of the trace formula, we shall closely follow [4] and shall therefore limit 
ourselves to sketching the main steps while emphasizing the additional aspects that enter 
the problem due to symmetry adaptation. 

Let p ( E )  be the level density of the quantum Hamiltonian H. Then, 

(3.1) 

where G(E) = (E+- H)-' is the advanced Green function associated with Hamiltonian H. 
Owing to the invariance of the Hamiltonian under transformations g c 8, the quantum- 

mechanical problem will split into independent problems defined on the subspaces of Hilbert 
space associated with the various irreducible group representations [ 5 ] .  In certain cases, 
particular IR will be of interest while in others all IR will be relevant and appear in the 
spectrum. For the purpose of the analysis of the spectra, we prefer to consider the different 
symmetries separately. In any case, this will imply that the trace is to be taken over states 
with the correct symmetry only. 

For the semi-classical treatment, we make one additional assumption: B is a group of 
point transformations, i.e. a group of transformations that map the configuration space onto 
itself. me point transformations need not but may be linear.) While this simplification is 
not essential to the classification of orbits presented in the previous section, it allows us to 
readily obtain periodic-orbit sums from a path-integral formulation, and it covers the most 
obvious cases of interest. 

Using the general definition of projectors in terms of characters [5], we write for the 
projection operator 

(-) p ( E )  = -ImtraceG(E) 
I7 
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where x f  indicates the IR of G labelled by f .  This projection operator can be rewritten as 

(3.3) 

Here, the first sum is taken over all (conjugate) classes and gi is some representative of a 
given class. The character x f  is a class function as indicated by replacing the dependence 
on the group element by the index i for the conjugate class. 

We now have to introduce the projection operator into trace equation (3.1) and obtain 

(3.4) 

Here, due to'the cyclic property of the trace and the fact that the projection operator is 
idempotent, this operator appears only once, though formally it ought to appear on both 
sides in order to guarantee that projections on the appropriate invariant subspace are taken. 
For the same reason, we will now see that the sum over all group elements that appears in 
the projection operator drops out in the trace. If r = (4. p )  with q = (ql ,  q 2 . .  , qn] ,  and 
similarly for p ,  we may write explicitly 

(-1 p f ( E )  = - Imtrace[G(E)Pf]. 
K 

Here, as in [4], we use the configuration-space representation of the class generator gi in 
terms of a product of Dirac Ss in vector notation. Note that the reduction to a sum over 
conjugate classes is not simply related to the reduction we found to classify the periodic 
orbits in the previous section, despite its being the same decomposition. 

Using Feynman path integrals and following [4] closely for the stationary-phase 
approximation, we can rewrite each term of the sum in equation (3.5) as a sum over all 
classical trajectories that lead at a given energy E from any point r E M to g i r  and obtain 

J dqdq' (QIG(E)lq')S(giq. 4') 

Each trajectory in sum (3.6) is determined by the energy E ,  the equations of motion and 
by the end points q and g i q  in configuration space. Moreover, S ( E )  is the action along the 
trajectory from r to gjr, p is the Maslov index (an integer) and F is the determinant of 
the monodromy matrix. This matrix has the form 1 - A where A describes the map of the 
infinitesimal area perpendicular to the trajectory at q onto the corresponding area at gig. As 
shown in section 2, each trajectory in equation (3.6) is part of a periodic orbit. The integral 
in equation (3.6) extends over all points along the projection of the periodic trajectory on 
configuration space. 
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4. The periodic-orbit sum 

In this section, we proceed to give expression (3.5) in its entirety with the expansion 
obtained for the stationary-phase approximation for integral (3.6) in simple form in terms of 
the classical periodic orbits, i.e. we use the classification of section 2 to simplify the result 
as far as possible. To do this, we proceed in two steps. First, we analyse a single term in 
the sum on the right-hand side of equation (3.6) in order to clearly display the role of the 
group element gj in such a term. Then, we combine the sum over classes in equation (3.5) 
with the sum over orbits i n  equation (3.6) to obtain the final result in its simplest form. 

As shown in section 2, a trajectory connecting points r and gjr must be part of a 
periodic orbit. Hence, it must be possible to express S, p and F = 1 - A in terms of the 
corresponding quantities SO, po and FO = 1 - A0 corresponding to the elementary trajectory 
connecting r and g,r, where g, is the elementary group operation (see section 2 )  on the 
periodic orbit of which the trajectory is part. We first note that with S,, pp and F, = I -A, 
denoting the action, the Maslov index and the monodromy matrix for a single traversal of 
the entire orbit, we have SO = Sp/k, po = pp/k and A0 = A;'. Then S = KSO, p = K ~ O  
and A = A; for a single traversal of the trajectory corresponding to the K-fold application 
of g, to a point on the periodic orbit for which g, is the elementary group operation. These 
relations hold because the quantities SO. poco, Ao, S, p and'A are independent of the initial 
point chosen on the orbit. 

Allowing for v traversals of the entire periodic orbit as we reach g i r  from r, we find 
that the contribution of this trajectory will read as 

(4.1) 

The integral in equation (3.6) would be obtained by summing over all v to take care of 
the multiple traversals and over all periodic orbits determining the value of K appropriately. 
However, we can obtain a simpler expression for the entire trace, as given in equation (3.5), 
if we take into account the following considerations. 

The group element gi in equation (3.6) does not determine the algebraic equivalence 
class to which the periodic orbits belong. This is readily understood if we take into account 
that not all elements of Ci  belong to the same conjugate class. Actually, i t  is only the 
elementary group operation g, on a given orbit which characterizes both the cyclic group 
and the algebraic equivalence of orbits. Thus gi = g: will certainly lead to a trajectory 
on all orbits for which g, is the elementary group operation. Therefore, we would have to 
determine, for any given algebraic equivalence class, the value K and the elementary group 
operation to which gi belongs, if we wish to perform the sum over all i. 

In practice, we invert the order of the summations. This implies that we have to 
consider a specific trajectory, characterized algebraically by the conjugate class c to which 
the corresponding periodic orbit belongs, and the power K to which the elementary operation 
on this orbit is lifted, to reach the end point. This defines the conjugate class j ( c ,  K )  to which 
g: belongs. As this class is defined uniquely, we obtain a Kronecker delta S ( i ,  j ( c ,  K ) )  in 
the final expression. Thus, we can supress the summation over i and replace the index of 
the character by i(c, K ) .  As shown in the appendix, this no longer holds true for degenerate 
periodic orbits. 

T H Seligman and H A Weidenmulier 

~ H T  
( z ~ f i ) C n t t ) / Z  

det-'/'(l - exp[i(vk + K)(So/A - ~ p 0 / 2 ) 1 .  

Thus, we can write equation (3.5) as 

(4.2) 
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Note that not all dependencies on summation indices are explicitly displayed. Thus, for 
example. all dynamical quantities depend on dc, and k depends on c .  

We recall the structure of the summations in this final formula. 
(i) The U sum indicates the number of retracings 
(ii) The d, sum runs over an infinite set of dynamically different, but algebraically 

Note that exactly one of each set of dynamically equivalent unstable periodic orbits. 
equivalent orbits must appear; the representative can be chosen arbitrarily. 

(iii) The K sum identifies how far we follow a given orbit without retracings. 
(iv) The c s u m  ranges over all conjugate classes. 
The result obtained in this way has the advantage of clearly displaying the group- 

theoretical structure of the problem. The classification of periodic orbits achieved in 
section 2 was used to reduce the periodic-orbit sum to a sum over certain elementary 
time evolutions. thus greatly simplifying the situation. Note that the case where any group 
operation leads to a new periodic orbit is clearly included, but in this case the sum over K 

vanishes as the retracings, beginning with one, take care of the entire situation. In keeping 
with our earlier statement, in a trace formula, there is no distinction between the action of 
identical and conjugate elementary operations. 

5. Conclusions 

We have investigated the influence of a discrete symmetry of a chaotic Hamiltonian on the 
structure of periodic orbits. We have found that the periodic orbits can be grouped into 
classes of algebraically equivalent orbits. Each equivalence class, in turn, is the union of 
classes of dynamically equivalent orbits. The orbits in each of the latter classes can be 
viewed as the union of a set of trajectories which, in turn, are connected by an equivalence 
relation generated by the symmetry group. 

We have studied the consequences of these results for the semi-classical approximation 
to the density of states corresponding to a given irreducible representation of the symmetry 
group. Using the semi-classical approximation in a properly modified quantum-mechanical 
hace formula leads to a modification of the standard expression for the semi-classical 
periodic-orbit sum: the amplitudes with which individual orbits contribute to the sum depend 
on the irreducible representation chosen. We have used the above-mentioned classification 
of orbits to rewrite the periodic-orbit sum as a sum of contributions over classes. The 
resulting generic structure for the sum has one shortcoming: group theory alone does not 
allow us to say which classes actually occur in the sum with which frequency. This is 
determined by the dynamics of the system, and remains to be calculated individually for 
each system. 

As stated in the introduction, we expect our approach to be useful for large groups. 
The most obvious case is that of the symmetric group. It arises in the treatment of bosonic 
or fermionic systems. Such systems may have internal degrees of freedom such as spin 
and/or isospin and the problem then is not quite as simple as the one treated in [4]. We 
can either construct more complicated projectors involving spin and then integrate the spin 
variables exactly, or we can replace the spin degrees of freedom by using more general 
orbital symmetries which are known to be isomorphic to the spin formulation [6 ] .  (Similar 
procedures may be used in nuclear physics for fixed super multiplets [7,8].) We prefer 
the latter course because the meaning of the semi-classical approximation inherent in the 
stationary-phase approximation is more obvious if only quantities that have a classical limit 
appear, The formalism developed in this paper has the required generality. 
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It will be interesting to extend these considerations to Hamiltonians which also depend 
on intrinsic degrees of freedom like spin or isospin and possess discrete symmetries only 
when all degrees of freedom are considered. 
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Appendix 

The degenerate case, i.e. the case where a symmetry operation leaves an entire periodic 
orbit p pointwise invariant may occur, although it is probably most important for groups 
with a small number of elements, for which the reduced phasespace method [9] works 
quite well. Nevertheless, we shall outline the necessary treatment for such a case. First, 
we note that the elements of B that leave a given periodic orbit pointwise invariant must 
form a subgroup Z C G; all equivalent orbits will be invariant under an isomorphic group 
generated by conjugation with the element g E B that transforms the original orbit on which 
Z was defined into any of the equivalent orbits. 

We now consider all elements g E 0 which map the periodic orbit p onto itself (without 
necessarily leaving p pointwise invariant). These elements form a subgroup Gp of B which 
is no longer just the cyclic group generated by the elementary group operation on this orbit 
(which must still exist as the corresponding argument of section 2 continues to be valid 
once we exclude group elements that act trivially on p ) .  Moreover, Z is a normal subgroup 
of 4. This follows directly from the the fact that Z is the largest subgroup of Bp which acts 
trivially on p .  while p in turn may be considered an invariant space under the action of 4. 
The factor group Bp/2 must be isomorphic to the cyclic group generated by the elementary 
group operation on p .  Note that this group need not be the same cyclic group that would 
occur for any of the generic orbits. 

We now consider a left coset decomposition of G with respect to Gp The generators are 
not unique, but each of them will, when applied to the original orbit, take us to a different 
orbit, as all group elements that leave the orbit invariant have been factored out. Note 
that no new relations result from the symmetry of the orbit reached by the coset generator, 
as the invariance group of the new orbit is just the conjugate of the invariance group for 
the original orbit. From the above argument, we immediately conclude that the number of 
periodic orbits equivalent to p is 141 = k x 1x1, where k is the order of the cyclic group 
generated by the primitive group operation on p .  

The upshot of these considerations is that the number of equivalent periodic orbits will 
be much smaller in the degenerate case than in the non-degenerate case. On the other hand, 
the sum in the projection operator still runs over all group elements. Thus, we will have to 
modify the final argument that combines the two sums in section 4. There we simply had 
to determine to which conjugate class a given power K of the elementary group operation 
would belong. This was expressed by the index function i(c, K ) .  Now this function can be 
multivalued and we instead need a multiplicity m(i .  c, K )  which counts how many elements 
of the set g:Z lie in the conjugacy class i, and then formally perform the summation over i 
and c separately. For the non-degenerate case, this function would, for any c, K combination, 
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take the value I only once and otherwise would vanish. This fact allows us to eliminate 
one summation in section 4. 

The very specific structure of the subgroups that occur limit the possible algebraic 
structures, and it is, in principle, again feasible to give an algebraic characterization of the 
equivalence classes for degenerate orbits. In this case, it seems rather likely that not all 
possibilities are realized and it  is thus reasonable to work out the specific multiplicities for 
any case of interest. 

In the present framework, there is no difference in the form of the stability factors for 
those periodic orbits which are left pointwise invariant by some g c B, and for those other 
periodic orbits which do not have this property. This is because the calculation of the 
stability factors proceeds exactly in parallel in both cases. On the other hand, in the method 
of 191. pointwiseinvariant periodic orbits require a special treatment because they lie on 
the boundary of the fundamental domain. The resulting stability factors are not obviously 
of the same form as found for periodic orbits in the interior of the fundamental domain, or 
as found in the present paper. Unfortunately, details of the calculation are not given in [9], 
and we have therefore not been able to trace the root of this difference. 
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